How can we quantify, explain, and apply the uncertainty of complex soil maps predicted with neural networks?
Kerstin Rau, Katharina Eggensperger, Frank Schneider, Philipp Hennig, Thomas Scholten
- In: Science of Total Environment (STOTEN), 2024
How can we quantify, explain, and apply the uncertainty of complex soil maps predicted with neural networks?
Kerstin Rau, Katharina Eggensperger, Frank Schneider, Philipp Hennig, Thomas Scholten
Towards Bandit-based Optimization for Automated Machine Learning
Amir Rezaei Balef, Claire Vernade, Katharina Eggensperger
Position: Why We Must Rethink Empirical Research in Machine Learning
Moritz Herrmann, Julian Lange, Katharina Eggensperger, Giuseppe Casalicchio, Marcel Wever, Matthias Feurer, David Rügamer, Eyke Hüllermeier, Anne-Laure Boulesteix, Bernd Bischl
Towards Quantifying the Effect of Dataset Selection for Benchmarking Tabular Machine Learning Approaches
Ravin Kohli, Matthias Feurer, Bernd Bischl, Katharina Eggensperger, Frank Hutter
Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML
Hilde Weerts, Florian Pfisterer, Matthias Feurer, Katharina Eggensperger, Noor Awad, Joaquin Vanschoren, Mykola Pechenizkiy, Bernd Bischl, Frank Hutter
Mind the Gap: Measuring Generalization Performance Across Multiple Objectives
Matthias Feurer, Katharina Eggensperger, Edward Bergman, Florian Pfisterer, Bernd Bischl, Frank Hutter
TabPFN: A Transformer that Solves Small Tabular Classification Problems in a Second
Noah Hollmann, Samuel Müller, Katharina Eggensperger, Frank Hutter
Note: Superseding “TabPFN: A Transformer that Solves Small Tabular Classification Problems in a Second” in TLR @ NeurIPS 2022
TabPFN: A Transformer that Solves Small Tabular Classification Problems in a Second
Noah Hollmann, Samuel Müller, Katharina Eggensperger, Frank Hutter
Received the best paper award
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization
Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, Frank Hutter
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, Frank Hutter
Advanced Hyperparameter Optimization: Performance Modelling and Efficient Benchmarking
Katharina Eggensperger
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik, Matthias Feurer, René Sass, Aaron Klein, Noor Awad, Marius Lindauer, Frank Hutter
Squirrel: A Switching Hyperparameter Optimizer Description of the Entry by AutoML.org & IOHProfiler to the NeurIPS 2020 BBO Challenge
Noor Awad, Gresa Shala, Difan Deng, Neeratyoy Mallik, Matthias Feurer, Katharina Eggensperger, André Biedenkapp, Diederick Vermetten, Hao Wang, Carola Doerr, Marius Lindauer, Frank Hutter
Optimizer description for the NeurIPS 2020 BBO competition. Squirrel won the competition´s warm-starting friendly leaderboard
Neural Model-based Optimization with Right-Censored Observations
Katharina Eggensperger, Kai Haase, Philipp Müller, Marius Lindauer, Frank Hutter
BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization and Analysis of Hyperparameters
Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Joshua Marben, Philipp Müller, Frank Hutter
Pitfalls and Best Practices in Algoritm Configuration
Katharina Eggensperger, Marius Lindauer, Frank Hutter
Towards Assessing the Impact of Bayesian Optimization’s Own Hyperparameter
Marius Lindauer, Matthias Feurer, Katharina Eggensperger, André Biedenkapp, Frank Hutter
Auto-Sklearn: Efficient and Robust Automated Machine Learning
Matthias Feurer, Aaron Klein, Katharina Eggensperger, J. Tobias Springenberg, Manuel Blum, Frank Hutter
Adapted version of the 2015 NeurIPS paper “Efficient and Robust Automated Machine Learning
Efficient Benchmarking of Algorithm Configurators via Model-Based Surrogates
Katharina Eggensperger, Marius Lindauer, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown
Neural Networks for Predicting Algorithm Runtime Distribution
Katharina Eggensperger, Marius Lindauer, Frank Hutter
Practical Automated Machine Learning for the AutoML Challenger 2018
Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, Frank Hutter
Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization
Robin Schirrmeister, J. Tobias Springenberg, Lukas Fiederer, Martin Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, Tonio Ball
Filtering Outlier in Bayesian Optimization
Ruben Martinez-Cantin, Kevin Tee, Mike McCourt, Katharina Eggensperger
Efficient Parameter Importance Analysis via Ablation with Surrogates
André Biedenkapp, Marius Lindauer, Katharina Eggensperger, Chris Fawcett, Holger H. Hoos, Frank Hutter
Hyperparameter Optimization for Machine Learning Problems in BCI (Abstract)
Andreas Meinel, Katharina Eggensperger, Michael Tangermann, Frank Hutter
Automatic Bone Estimation for Skeleton Tracking in Optical Motion Capture
Tobias Schubert, Katharina Eggensperger, Alexis Gkogkidis, Frank Hutter, Tonio Ball, Wolfram Burgard
video showing the results of the optimization procedure
Efficient and Robust Automated Machine Learning
Matthias Feurer, Aaron Klein, Katharina Eggensperger, J. Tobias Springenberg, Manuel Blum, Frank Hutter
Methods for Improving Bayesian Optimization for AutoML
Matthias Feurer, Aaron Klein, Katharina Eggensperger, J. Tobias Springenberg, Manuel Blum, Frank Hutter
Efficient Benchmarking of Hyperparameter Optimizers via Surrogates
Katharina Eggensperger, Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown
Note: Superseding “Surrogate Benchmarks for Hyperparameter Optimization” in MetaSel @ ECAI 2014
Surrogate Benchmarks for Hyperparameter Optimization
Katharina Eggensperger, Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown
Note: Superseded by “Efficient Benchmarking of Hyperparameter Optimizers via Surrogates” in AAAI 2015
Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters
Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek, Holger H. Hoos, Kevin Leyton-Brown