

Seminar Summer Term 2024 AutoML in the Age of Large Pre-trained Models

Katharina Eggensperger

KEggensperger katharina.eggensperger@uni-tuebingen.de AutoML for Science

April 16th, 2024

Based on Material from: "AutoML: Accelerating Research on and Development of AI Applications" lecture held at ESSAI / <u>CC BY-SA 4.0</u>

[20min] **Big Picture AutoML** [?] Your *Questions* [10min] **Organization** [?] Your *Questions*

[15min] **Topics/Papers**

[?] Your Questions

[30min; if time left; unlikely] How to give a good presentation

The Big Picture

>> What is this about?

"Machine learning is the science of getting computers to act without being explicitly programmed."

by Andrew Ng (probably inspired by Arthur Samuels)

... also true for industry

Challenges for Applying ML

- Required Expertise
- Required Data
- Required Resources

Source: Van Noorden et al. "Al and Science: What 1,600 researchers think" Nature 2023

source: https://scikit-learn. org/stable/tutorial/ machine_learning map/index.html

Efficient research and development

 \rightarrow AutoML can yield state-of-the-art results

Systematic research and development \rightarrow no (human) bias or non-systematic evaluation

Broader use of ML methods

 \rightarrow less required ML expert knowledge

Each dataset requires different optimal ML-designs \rightarrow design decisions have to be made for each dataset again

- Training of a single ML model can be expensive →we can not try many configurations
- ? Mathematical relations are (often) unknown
 - \rightarrow gradient-based optimization not easily possible
- Optimization in highly complex spaces
 - \rightarrow including categorical, continuous and conditional dependencies

AutoML Research: Hyperparameter Optimization

EBERHARD KARLS

TÜBINGEN

Methods:

- Bayesian Optimization
- Evolutionary Algorithms
- Speed-up with
 - Transfer-Learning
 - Multi-Fidelity
 - Human-priors

Success Stories:

- Tuning Alpha Go
- W&B, Optuna and more

Find the best performing neural architecture given a searchspace and costfunction:

 $\boldsymbol{\lambda}^* \in \operatorname*{arg\,min}_{\boldsymbol{\lambda} \in \boldsymbol{\Lambda}} c(N_{\boldsymbol{\lambda}}, \mathcal{D}_{train}, \mathcal{D}_{valid})$

Neural Architecture Search

Methods:

- Black-Box NAS
- One-Shot NAS
- Speed-up:
 - Zero-cost Proxies
 - Performance Estimation

Success Story: Hardware-aware NAS for embedded devices

Note: NAS is a decade-old problem, but mainstream since 2017; probably the most popular AutoML Problem

Session #4

 $\{\mathbf{X}_{train}, \mathbf{y}_{train}, \}$

 $\hat{\mathbf{y}}_{test}$

 \mathbf{X}_{test}, b, L

Find the best performing algorithm and configuration given a searchspace and costfunction:

$$(\mathcal{A}^*, \boldsymbol{\lambda}^*) \in \operatorname*{arg\,min}_{\mathcal{A} \in \mathbf{A}, \boldsymbol{\lambda} \in \mathbf{\Lambda}} c(\mathcal{A}_{\boldsymbol{\lambda}}, \mathcal{D}_{train}, \mathcal{D}_{valid})$$

Session #2, #3

What can AutoML do for/with large-pretrained models

Organization

>> When, where and how?

When? Tuesdays 12:00 (c.t.) - 14:00 (actually 12:15-13:45) Where? MvL6, lecture hall (might change)

Expected Background Knowledge

- Machine Learning
- Deep Learning (this includes transformers)
- (optional) Practical experience with ML/DL

Grades: Presentation / Slides / Report / Participation

Note: You're expected to participate in all sessions

All info is on my website: https://keggensperger.github.io/teaching/2024-summer-seminar

Main Features:

- Get a broad overview of current methods in AutoML
- Understand challenges for research in AutoML
- Learn how AutoML interacts with large pre-trained models

Bonus Features:

- A lot of focus on interaction! Active participation and reading the papers beforehand is necessary.
 → You will gain a much better understanding
- **Feedback survey after each presentation**: Anonymous feedback from everyone after the presentation. →Learn what others like about your presentation and how to improve
- **Give and receive feedback from a fellow student**: Everyone gets a *study buddy* to practice the presentation and discuss open questions. To get feedback from me, you should have talked to your study buddy (and incorporated their feedback)

 \rightarrow Higher quality of presentations

machine learning new perspectives for science

Your presentation lasts ~40 minutes and should consist of:

• 20 minutes presentation

- introduction to the topic
- summary of your paper: methods & experiments
- conclusion: strengths / weaknesses
- \rightarrow see also separate presentation on "How to give a good presentation"

• 20 minutes discussion

- clarification questions
- additional content
- a short quiz
- prepared discussion questions

3-5 pages (format TBD; excluding references) covering the following

A review in the context of AutoML including (1-2 pages)

- Motivation: Why does this method matter for AutoML?
- 3 strengths
- 3 weaknesses
- 3 questions you would ask the authors (can be questions that came up during your discussion)

An **assessment** of an AI-generated summary (1-2 pages)

- What's wrong?
- What's correct?
- What's missing

A list with **further** material that you've used, e.g. (0.5 page)

- Code
- Public reviews
- Blogposts
- Video Tutorials

Questions?

16.04.2024	Organization
23.04.2024	Intro AutoML I
30.04.2024	Intro AutoML II (if needed)
07-21.05.2024	no meeting

Large Pre-Trained Models for AutoML

28.05.2024 04.06.2024 #1 Bayesian Optimization (OptFormer;LLM4BO) no meeting

11.06.2024	#2 Tabular Data (TabPFN;XTab)
18.06.2024	#3 Data Science (CAAFEE;MLAgent)
25.06.2024	no meeting
02.07.2024	#4 Neural Architecture Search (GPT4NAS;GPT-NAS)
09.07.2024	no meeting

AutoML for Large Pre-Trained Models

16.07.2024#5 FineTuning (QuickTune;EvoPrompt;Bandits4LLMs)23.07.2024#6 ScalingLaws (TensorV;ScalingLaws4BO)

Session schedule:

1. 20min Presentation

- 2. 20min Q&A
- 3. 5min Feedback

machine learning new perspectives for science

#1 Session: Bayesian Optimization

Bayesian Optimization is the basis for most hyperparameter tuning methods. Can we improve it with LLMs?

- 1. [OptFormer] Chen et al. <u>Towards learning universal hyperparameter optimizers with transformers</u> (NeurIPS'22)
- 2. [LLM4BO] Liu et al. Large language models to enhance Bayesian optimization (ICLR'24)

#2 Session: DL for Tabular Data

Tabular data is the most common data type and offers the most diverse landscape of ML solutions. Can we use one transformers instead?

- 1. [TabPFN] Hollman et el. <u>TabPFN: A Transformer That Solves Small Tabular Classification Problems in a</u> <u>Second</u> (ICLR'23)
- 2. [XTab] Zhu et al. XTab: Cross-table Pretraining for Tabular Transformers (ICML'23)

#3 Session: Data Science

Data Science contains many opportunities for AutoML. Can LLMs help here?

- 1. [CAAFE] Hollman et al. Large Language Models for Automated Data Science: Introducing CAAFE for Context-Aware Automated Feature Engineering (NeurIPS'24)
- 2. [MLAgent] Huang et al. <u>Benchmarking Large Language Models as AI Research Agents</u> (arxiv'23)

#4 Session: Neural Architecture Search

NAS is arguably the largest research area of AutoML (by #papers). Can we find better architectures using transformers?

- 1. [GPT4NAS] Zheng et al. <u>Can GPT-4 Perform Neural Architecture Search?</u> (arxiv'23)
- 2. [GPT-NAS] Yu et al. <u>GPT-NAS: Evolutionary Neural Architecture Search with the Generative Pre-Trained</u> (arxiv'22)

#5 Session: Using LLMs

Finetuning and Prompt-Engineering are novel challenges in the age of LLMs. Can we use AutoML for this?

- 1. [QuickTune] Arango et al. <u>Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How</u> (ICLR'24)
- 2. [EvoPrompt] Guo et al. <u>Connecting Large Language Models with Evolutionary Algorithms Yields Powerful</u> <u>Prompt Optimizers</u> (ICLR'24)
- 3. [Bandits4LLMs] Xia et al. <u>Which LLM to Play? Convergence-Aware Online Model Selection with</u> <u>Time-Increasing Bandits</u> (WWW'24)

#6 Session: Scaling Laws

Building large models is extremely expensive. How can we approach optimizing such large models?

- 1. [TensorV] Yang et al. <u>Tuning large neural networks via zero-shot hyperparameter transfer</u> (NeurIPS'21)
- 2. [ScalingLaws4BO] Kadra et al. <u>Scaling Laws for Hyperparameter Optimization</u> (Neurips'23)

Questions?

What's next?

>> What should I do now?

https://keggensperger.github.i o/teaching/2024-summer-sem inar

Deadlines:

- Friday, 19.04.2024 (noon)
 - Register on ILIAS
- Monday, 22.04.2024, (noon)
 - Fill out survey

\rightarrow You will hear back from me **before next Tuesday**