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Story Line Today

[?] Questions regarding the organization

[25min] How to give a good presentation (not only in this seminar)
[?] Your Questions

[40min] Bayesian Optimization for HPO
[?] Your Questions
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The Big Picture

>> What is this about?
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AutoML

Optimization and automation of tedious design
decisions of a complete ML pipeline in order to
obtain a model with peak performance.

DATA BAYESIAN OPTIMIZATION (BO) | EVOLUTIONARY
ALGORITHM (EA)

PROCESS performance for unknown Select, mutate
hyperparameters. and recombine
configurations.

GAUSSIAN Estimate the model’s

surro-
gate | ————
‘model
]_ TRAIN AND EVALUATE

RANDOM
FOREST

COREICURATIONSEACE Given a task choose the

best algorithm based on
. . performance prediction.
.- Generic ML Algorithms

i i..Random Forest
Linear Regression

ALGORITHM
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i... Neural Networks %

PRE-PROCESSING
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Search for the best hyperparameter configuration given an
algorithm.

PICK NEXT HYPER-| " CLASSIC ML

PARAMETERS EVALUATE

hyperparameter model
configuration parameters

MULTI-CRITERIA
SINGLE-CRITERION OPTIMIZATION
OPTIMIZATION

INTERPRETE

SPEED UP

. N . MODEL(S)
Meta-learning Grey-box optimization/ Multi-fidelity
across datasets learning curve prediction  optimization
NEU HITECTU
Search for the best neural
network architecture on S EVALUATE

different hierarchical levels
given a task.

Learn across tasks.

LEARNING POPULATION-

TO LEARN BASED TRAINING

START

CONFIGURATION
DYNAMIC ALGORITHM
CONFIGURATION (DAC)
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Sequential Experimentation @

eeeeeeeee

Why?

e |earn about the problem — Active Learning

e Find best setting — Black-Box optimization
e  Minimize average regret — Multi-armed Bandits
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Algorithm

Neural Architecture
Network Training
Data Science Pipeline
Simulator

Robot
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Sequential Experimentation

Goal: Find the best performing

configuration:
A* € argmin f (A,) )\n
AEA
—
&
—~
optimizer ("
—
f(A, )

@
o &
S
wll
K, B
,
target A
algorithm A
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Topics for Today

e \What do we optimize?
o Parameters vs. Hyperparameters
o Challenges for AutoML

e How do we optimize it?
o Grid Search
o Random Search

e How do we optimize it efficiently?
o Bayesian Optimization
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(Hyper-) Parameters

>> What can we tune? What should we tune?
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Model- vs Hyperparameters @

Model parameters can be Examples:
optimized during training and Splits of a Tree

are the output of the training. ¢ \eights of a Neural Network
e Coefficients of a linear model

Hyperparameters need to Examples: They can be:
be set before training and o |earing Rate for e real-valued, integer and
control the flexibility, Gradient Boosting categorical
structure and complexity of ® Optimizer for Neural e hierarchically

. Network Training dependent on each other
the model and ftraining K for K-Nearest e be on alog-scale

procedure. Neighbours
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Goal: Find the best performing complex search space No gradients
configuration: No prior knowledge
A* € argmin f (A))
AEA
—
&
/
- target

optimizer algorithm A

noisy
f(A)\n) expensive-to-evaluate

—
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How do we optimize it?

>> Here's my algorithm, data, metric and search space, what should I do?



gt T Black-Box Optimization Problem @
A
n
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Option 1: Grid Search Py

Popular technique: Evaluates all
combinations on a pre-defined
A multi-dimensional grid

oooooooooo

e o o o o o o o o o
ccccccccccc
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Option 1: Grid Search Il

oooooooooooo
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Advantages

e \ery easy to implement
e \ery easy to parallelize
e Can handle all types of hyperparameters

-

~

Disadvantages

Scales badly with #dimensions
Inefficient: Searches irrelevant areas
Requires to manual define discretization
All grid points need to be evaluated

ZAN
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Option 2: Random Search Py

Variation of Grid Search: Uniformly
sample configurations at random

e o
.
°
® e Testcouraey
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.
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.
.
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erparameter 1
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Option 2: Random Search I ~

/Advantages

Very easy to implement

Very easy to parallelize

Can handle all types of hyperparameters

No discretization required

| . Anytime algorithm: Can be stopped and continued based
- : k on the available budget and performance goal.

Disadvantages

e Scales badly with #dimensions
e [nefficient: Searches irrelevant areas

.

/
X
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With a budget of ]’ iterations:

Grid Search evaluates only T% unique
values per dimension

Random Search evaluates (most likely)
T’ different values per dimension

— Grid search can be disadvantageous if
some hyperparameters have little of no
impact on the performance [Bergstra et

al. 2012]

Unimportant parameter

Grid Search vs. Random Search

Grid Search
@) (@) (@)
© @) (@)
@) @) (@)

Important parameter

Unimportant parameter

Random Search

Important parameter

Image source: [Hutter et al.
2019
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How do we optimize it efficiently?

>> Here’'s my algorithm, data and design space and I have only limited time, what should I do?
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Model-based Optimization

observation

acquisition max

Photo by Wilhelm Gunkel on Unsplash
Image by Feurer, Hutter: Hyperparameter Optimization,
In: Automated Machine Learning
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Observation i
———————————————— - ”,f”’ B il \x //’/
Objective function
2 4 6 8 10 12
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Observation

~ -

Posterior mean Posterior uncertainty
Objective function

2 4 6 8 10 12
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Bayesian Optimization in a Nutshell U L
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Bayesian Optimization in a Nutshell

Observation

————
- -
- —~—

Posterior mean

~ -

Posterior uncertainty\

Objective function

/\/\fcq/uisition function
. /\

4 6

8 10

12
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I
i
Observation N
| S >
1 " -1 ~ 7
| V p
1 ,/
I \\\ Pe
: \\\ ///
1 O __’/
Acquisition max iPosterior mean Posterior uncertainty
: » . " " A L .
: Acquisijtion function Objective function
| y -
: \
2 4 6 8 10 12
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Bayesian Optimization in a Nutshell U L
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General approach

@ Fit a probabilistic model to the
collected function samples (A, c(A))

@ Use the model to guide optimization,
trading off exploration vs exploitation

Popular approach in the statistics
literature since Mockus et al. [1978]

e Efficient in #function evaluations

@ Works when objective is nonconvex,
noisy, has unknown derivatives, etc.

@ Recent convergence results
[Srinivas et al. 2009; Bull et al. 2011; de
Freitas et al. 2012; Kawaguchi et al. 2015]

Bayesian Optimization in a Nutshell

Observation

Acquisition max Posterior mean Posterior uncertainty

Objective function

\A}uisition function

4 482 6 8 10

12

New observation

10.89 12

machine learning
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Bayesian Optimization: Pseudocode

BO loop

Require:|Search space A|,|cost function c”acguisition function u||9re—|

|dictive model é]lmaximal number of function evaluations T|
Result : Best configuration A (according to D or ¢)
Initialize data D(© with initial observations

2 fort=1to 71T do

3
4
5
6

Fit predictive model ¢®) on D(¢-1)

Select next query point: A8 ¢ arg maxy - u(X; DED &)
Query ¢(AY)

~ Update data: D) « pt=1) {()\(t), c(}‘(t)»}

eeeeeeeeeeeeeeeee
eeeeeeeeeee
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Why is it called Bayesian Optimization? @ e

wwwwwwwwww

@ Bayesian optimization uses Bayes' theorem:

P(B|A) x P(A)
P(B)

P(A|B) = x P(B|A) x P(A)

@ Bayesian optimization uses this to compute a posterior over functions:

P(f|D1.4) < P(D14|f) x P(f),  where Dy = {A1., c(A1:) }

Meaning of the individual terms:

» P(f) is the prior over functions, which represents our belief about the space of possible
objective functions before we see any data

» Dy is the data (or observations, evidence)

> P(Dy.t|f) is the likelihood of the data given a function

» P(f|D1.t) is the posterior probability over functions given the data

| 27
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ﬂlvantages \

Sample efficient

Can handle noise

Priors can be incorporated
Does not require gradients
Theoretical guarantees

Many extensions available:

Bayesian Optimization: Pros and Cons

/Disadvantages

e Overhead because of
model training

e Crucially relies on robust
surrogate model

e Has quite a few design

Multi-Objective | Multi-Fidelity |
Parallelization | Warmstarting | etc. /

k decisions

eeeeeeeeeeeeeeeeee
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The acquisition function:

e decides which configuration to evaluate next

e judges the utility (or usefulness) of evaluating a
configuration (based on the surrogate model)

— It needs to trade-off exploration and exploitation
e Just picking the configuration with the lowest prediction would

be too greedy
e It needs to consider the uncertainty of the surrogate model

Main Ingredient I: The Acquisition Function @

| 29
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Expected Improvement (El)

GP Mean

— == Objective function i
"""""" - = _JAE 1.0x Sigma Confidence Envelope 7
> 2.0x Sigma Confidence Envelope
3.0x Sigma Confidence Envelope
V¥ Current Incumbent
¥ Observations
2 4 6 8 10 12

A

Given some observations and a fitted surrogate,

vvvvvvvvvvv

| 30



EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Expected Improvement (El) @

0 —— GP Mean A
_________ C_ T o ) R 1.0x Sigma Confidence Envelope *
-2 g 2.0x Sigma Confidence Envelope

3.0x Sigma Confidence Envelope
V¥ Current Incumbent
—4 8 Observations

2 4 6 8 10 12
A

Given some observations and a fitted surrogate,
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4
2
®
"
0 ® —— GP Mean
Cinc [~~="""""""V e e 1.0x Sigma Confidence Envelope 7
) 2.0x Sigma Confidence Envelope
3.0x Sigma Confidence Envelope
V¥ Current Incumbent
—4 ¥ Observations
2 4 6 8 10 12

A

We care about improving over the c._ .
Inc
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Expected Improvement (El)

A

We care about improving over the c._ .
Inc

12
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Expected Improvement (El) @

2 4 6 8 10 12
A

Let’s look at a candidate configuration A, and its hypothetical cost c.
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Expected Improvement (El) @

I
[\ @
|
|
|
|
|
|
|
|
|
|
|
|
|
|
e e e P
—
0
Il
0
D
()
0

2 4 6 8 10 12

We can compute the improvement | (A,). But how likely is it?
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Expected Improvement (El) @

Knowing that ¢(A) = N (u(X),0%(X)), we can compute p(c|A)

| 36
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Expected Improvement (El)

lc=Cinc—C p(c|A;)

8 10
A

Comparing this for different configurations
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Expected Improvement (El)

lc =Cinc — C

p(c|Az)

and costs.

10
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Expected Improvement (El) @

Ic=Cinc_C

p(c|Az)
8 10

A

To compute El, we sum all p(c | A) x I.over all possible cost values.
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We define the one-step positive improvement over the current incumbent as

Expected Improvement (El) - Formal Definition

ID(A) = max(0, cine — (X))

Expected Improvement is then defined as

W) =BIIOW) = [ 50 X) x 100 de.

—O0

Choose A € arg max(u
AeA

(t)
EI

(M)

eeeeeeeeeeeeeeeee
eeeeeeeeeee
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Other Acquisition Functions @

° Impl’ovement-based pOIiCieS [Expected Improvement (El), Probability of Improvement (PI), and Knowledge Gradient]
e Optimistic policies [upper/Lower Confidence Bound (UCB/LCB)]
e Information-based policies [entropy search (Es)]

O aim to increase certainty about the location of the minimizer

O not necessarily evaluate promising configurations
e Methods combining/mixing/switching these
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. ~N
Required in all cases .

e Regression model with
uncertainty estimates
N e Accurate predictions

/Depending on the application \

e Cheap to train

4 e —-- Objective function

e Scales well with #observations W Cherotbs

and #dimensions 2 2 6 8 10 12 12
e Can handle different types of

\ hyperparameters /
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Types of Surrogates Models U L

e (Gaussian Processes

e Random Forests

e Bayesian Neural Networks

Photo by Filip Zrnzevi¢ on Unsplash
Photo by Alina Grubnyak on Unsplash
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dvantages

Smooth uncertainty estimates
Strong sample efficiency
Expert knowledge can be
encoded in the kernel
Accurate predictions

/

Gaussian Processes

Gsadvantages

Cost scales cubically with
#observations

Weak performance for high
dimensionality

Not easily applicable in
discrete, categorical or
conditional spaces
Sensitive wrt its own
hyperparameters

/

— These make GPs
the most commonly
used model for
Bayesian optimization
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ajvantages

Scales well with #dimensions
and #observations

Training can be parallelized
and is fast

Can easily handle discrete,
categorical and conditional
spaces

Robust wrt. its own

Tree-Based Methods

\/

Disadvantages

Poor uncertainty estimates
Poor extrapolation (constant)
Expert knowledge can not be
easily incorporated

hyperparameters /

— These make RFs
a robust option in
high dimensions, a
high  number of
evaluations and for
mixed spaces

Photo by Filip Zrnzevi¢ on Unsplash
Photo by Alina Grubnyak on Unsplash
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RHOER DO

b

Image source: [Blundell et al. 2015]

(a

o

dvantages

Scales linear #observations

(Can yield) smooth uncertainty

estimates
Flexibility wrt. discrete and
categorical spaces

~

)

Bayesian Neural Networks

€

isadvantages

e Needs many #observations

e Uncertainty estimates often
worse than for GPs

e Many hyperparameters

e No robust off-the-shelf model

— These make
BNNs a promising

alternative. [Li et al.
2023]

Photo by Filip Zrnzevi¢ on Unsplash
Photo by Alina Grubnyak on Unsplash
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e Bayesian Optimization: Extensions @
Replace everything
with a LLM
Different models to /P Increase efficiency by
handle new design A / using lower fidelities
spaces n

* / Multi-objective

observation

acquisition max

Constraints?

NS

J
Leverage - /
User priors?
observations across p————9 f(A P

experiments

Photo nywng\mg nkel on Unsplash
Image by Feurer, Hutter. Hyp p arameter Optim
In: Automated Machine Loa
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