

Seminar WS23/24 Bayesian Optimization for HPO

Katharina Eggensperger

KEggensperger katharina.eggensperger@uni-tuebingen.de AutoML for Science

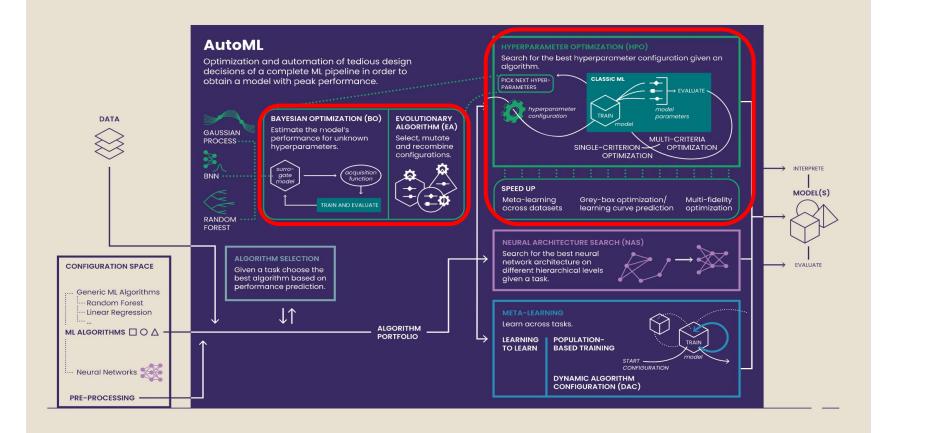
October 25th, 2023

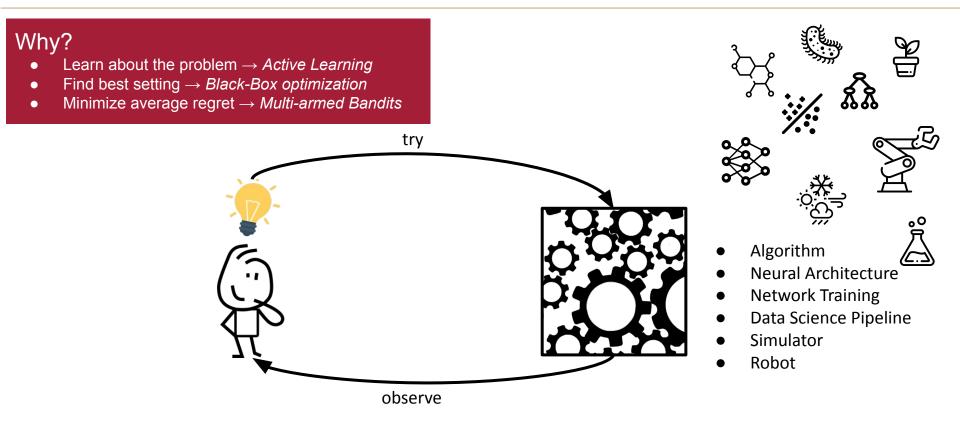
Based on Material from: "AutoML: Accelerating Research on and Development of Al Applications" lecture held at ESSAI / <u>CC BY-SA 4.0</u>

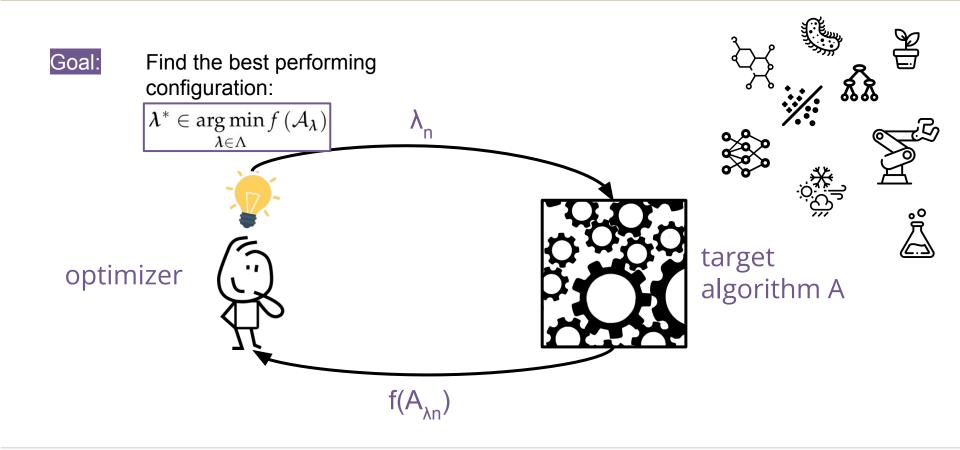
[?] Questions regarding the organization [25min] How to give a good presentation (not only in this seminar) [?] Your Questions [40min] Bayesian Optimization for HPO [?] Your Questions

The Big Picture

>> What is this about?







- What do we optimize?
 - Parameters vs. Hyperparameters
 - Challenges for AutoML

- How do we optimize it?
 - Grid Search
 - Random Search

- How do we optimize it efficiently?
 - Bayesian Optimization

(Hyper-) Parameters

>> What can we tune? What should we tune?

Model parameters can be optimized during training and are the output of the training.

Examples:

- Splits of a Tree
- Weights of a Neural Network
- Coefficients of a linear model

Hyperparameters need to be set before training and

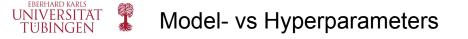
control the flexibility, structure and complexity of the model and training procedure.

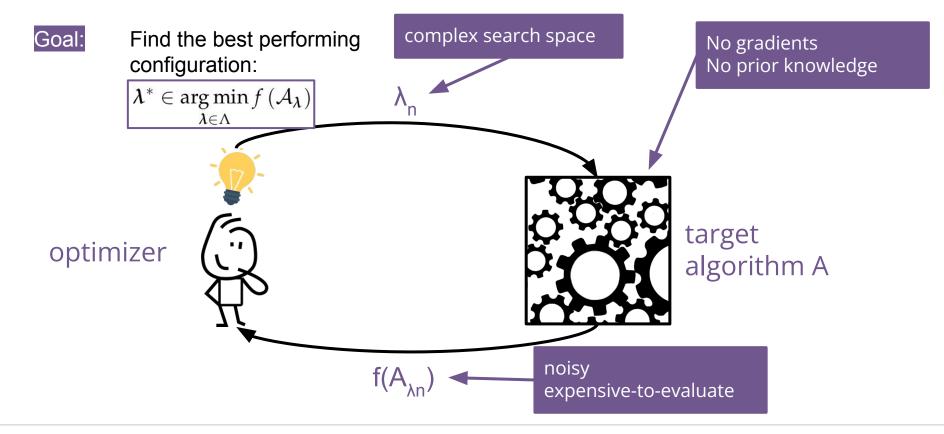
Examples:

- Learning Rate for Gradient Boosting
- **Optimizer for Neural Network Training**
- K for K-Nearest Neighbours

They can be:

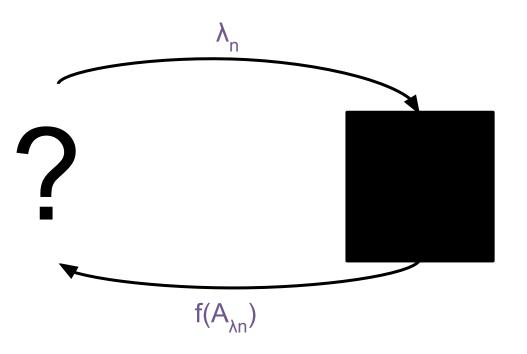
- real-valued, integer and • categorical
- hierarchically dependent on each other
- be on a log-scale

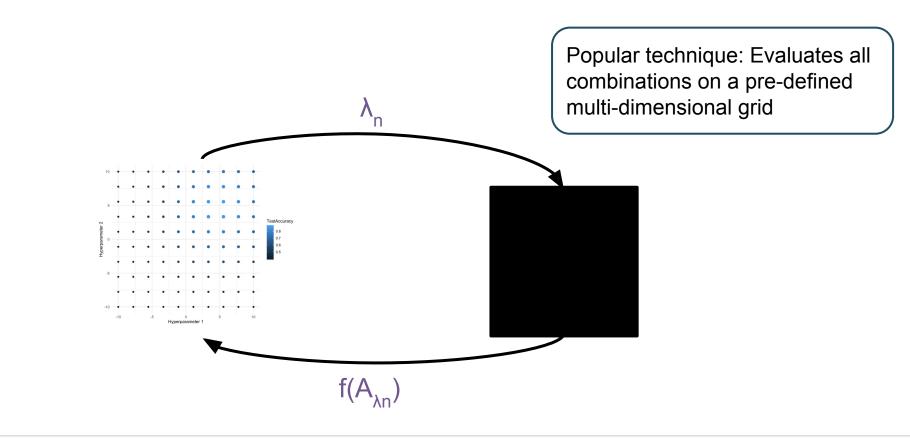


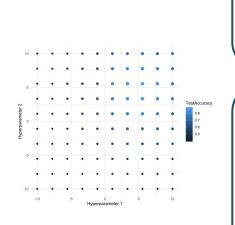


How do we optimize it?

>> Here's my algorithm, data, metric and search space, what should I do?





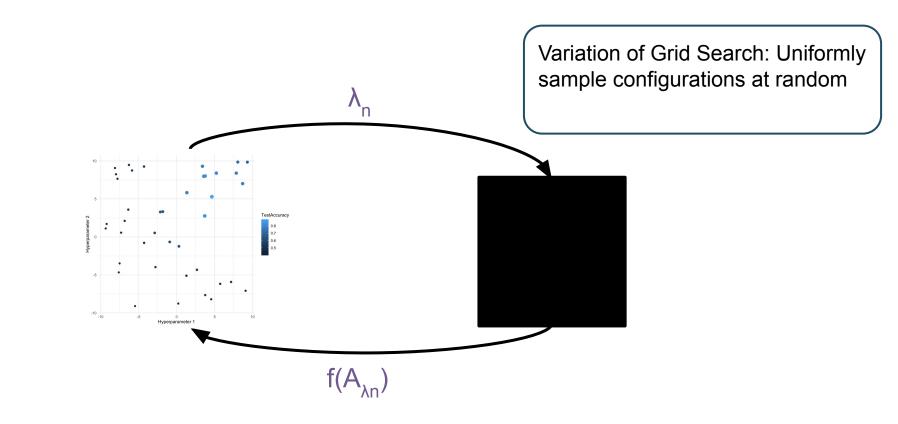


Advantages

- Very easy to implement
- Very easy to parallelize
- Can handle all types of hyperparameters

Disadvantages

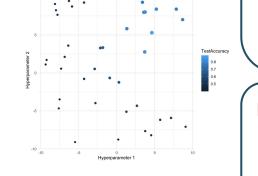
- Scales badly with #dimensions
- Inefficient: Searches irrelevant areas
- Requires to manual define discretization
- All grid points need to be evaluated



- Very easy to implement
- Very easy to parallelize
- Can handle all types of hyperparameters
- No discretization required
- Anytime algorithm: Can be stopped and continued based on the available budget and performance goal.

Disadvantages

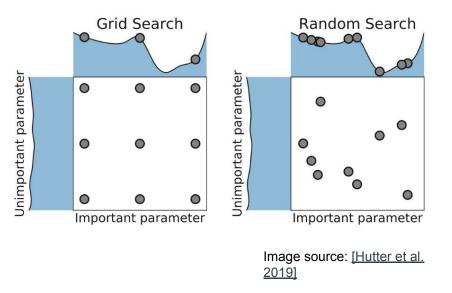
- Scales badly with #dimensions
- Inefficient: Searches irrelevant areas



With a **budget** of T iterations:

- **Grid Search** evaluates only $T^{\frac{1}{d}}$ unique values per dimension
- Random Search evaluates (most likely) T different values per dimension

 \rightarrow Grid search can be disadvantageous if some hyperparameters have little of no impact on the performance [Bergstra et al. 2012]



Questions?

How do we optimize it efficiently?

>> Here's my algorithm, data and design space and I have only limited time, what should I do?

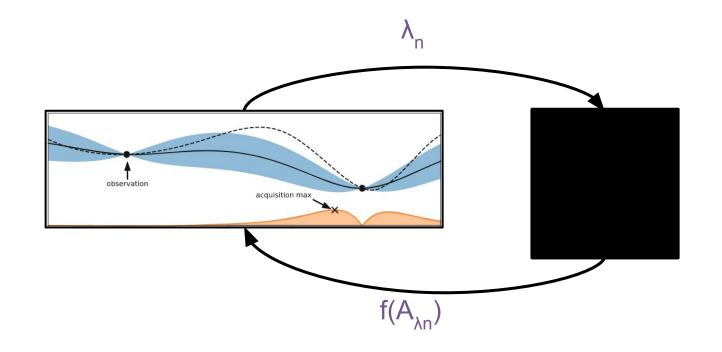
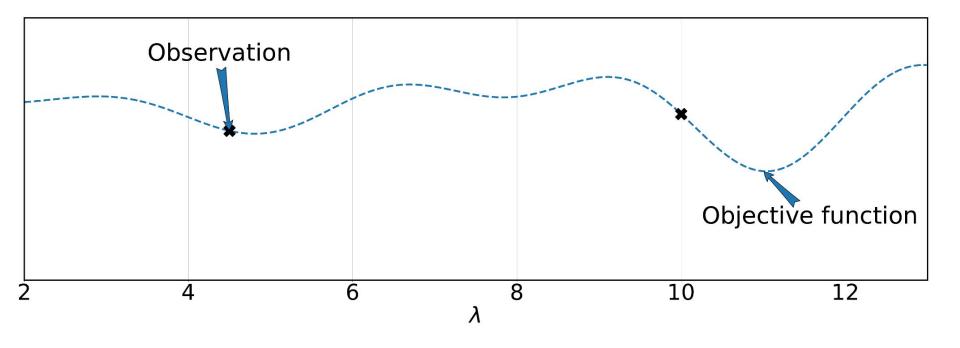
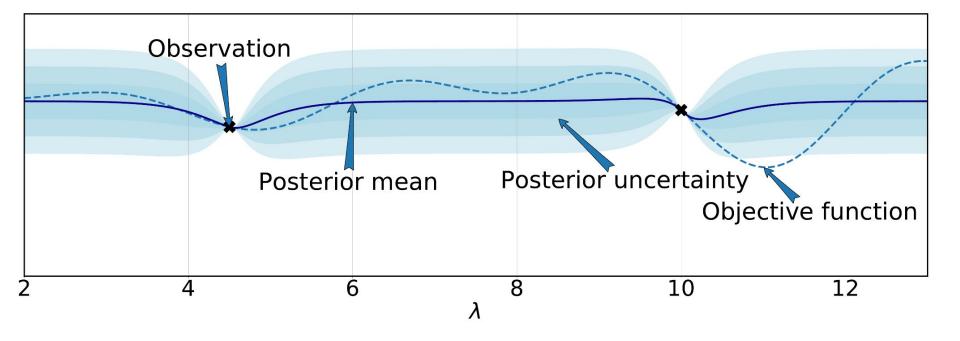
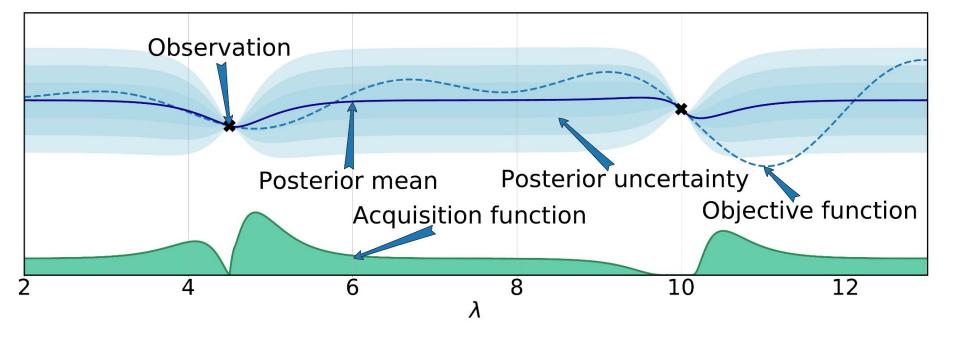
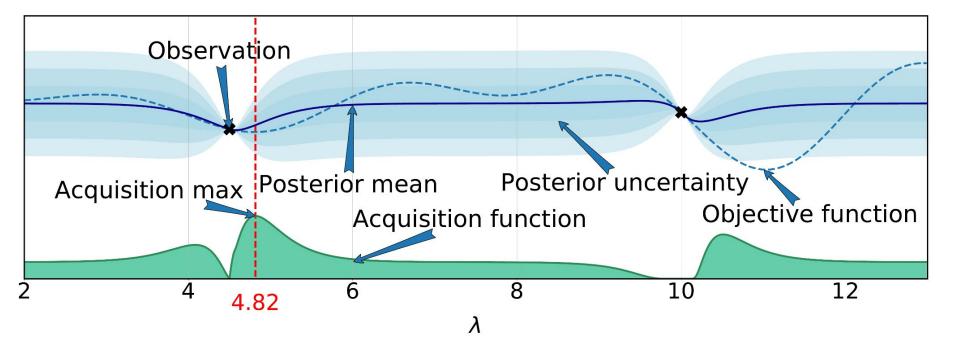


Photo by <u>Wilhelm Gunkel</u> on <u>Unsplash</u> Image by Feurer, Hutter: Hyperparameter Optimization. In: Automated Machine Learning









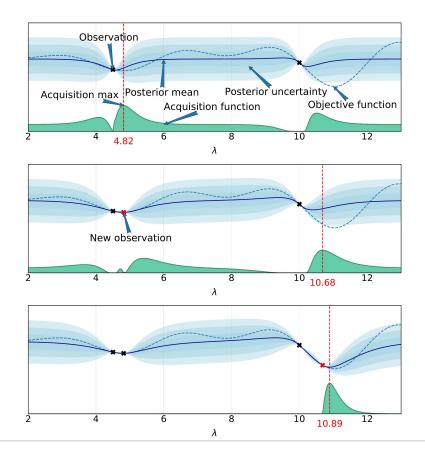
General approach

- Fit a probabilistic model to the collected function samples (λ, c(λ))
- Use the model to guide optimization, trading off exploration vs exploitation

Popular approach in the statistics literature since Mockus et al. [1978]

- Efficient in #function evaluations
- Works when objective is nonconvex, noisy, has unknown derivatives, etc.
- Recent convergence results

[Srinivas et al. 2009; Bull et al. 2011; de Freitas et al. 2012; Kawaguchi et al. 2015]



BO loop **Require:** Search space Λ , cost function c, acquisition function u predictive model \hat{c}_i maximal number of function evaluations T **Result** : Best configuration $\hat{\lambda}$ (according to \mathcal{D} or \hat{c}) 1 Initialize data $\mathcal{D}^{(0)}$ with initial observations 2 for t = 1 to T do Fit predictive model $\hat{c}^{(t)}$ on $\mathcal{D}^{(t-1)}$ 3 Select next query point: $\boldsymbol{\lambda}^{(t)} \in \arg \max_{\boldsymbol{\lambda} \in \boldsymbol{\Lambda}} u(\boldsymbol{\lambda}; \mathcal{D}^{(t-1)}, \hat{c}^{(t)})$ 4 Query $c(\boldsymbol{\lambda}^{(t)})$ 5 Update data: $\mathcal{D}^{(t)} \leftarrow \mathcal{D}^{(t-1)} \cup \{ \langle \boldsymbol{\lambda}^{(t)}, c(\boldsymbol{\lambda}^{(t)}) \rangle \}$ 6



• Bayesian optimization uses Bayes' theorem:

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)} \propto P(B|A) \times P(A)$$

• Bayesian optimization uses this to compute a posterior over functions:

$$P(f|\mathcal{D}_{1:t}) \propto P(\mathcal{D}_{1:t}|f) \times P(f), \quad \text{where } \mathcal{D}_{1:t} = \{ \boldsymbol{\lambda}_{1:t}, c(\boldsymbol{\lambda}_{1:t}) \}$$

Meaning of the individual terms:

- P(f) is the prior over functions, which represents our belief about the space of possible objective functions before we see any data
- $\mathcal{D}_{1:t}$ is the data (or observations, evidence)
- $P(\mathcal{D}_{1:t}|f)$ is the likelihood of the data given a function
- $P(f|\mathcal{D}_{1:t})$ is the posterior probability over functions given the data

Advantages

- Sample efficient
- Can handle noise
- Priors can be incorporated
- Does not require gradients
- Theoretical guarantees

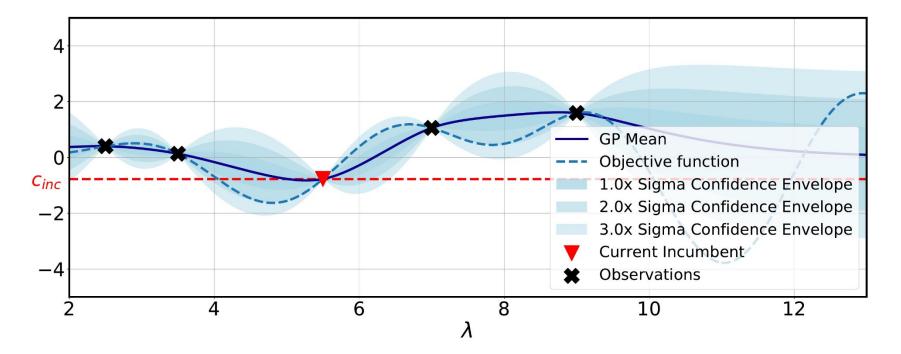
Many extensions available: Multi-Objective | Multi-Fidelity | Parallelization | Warmstarting | etc.

Disadvantages

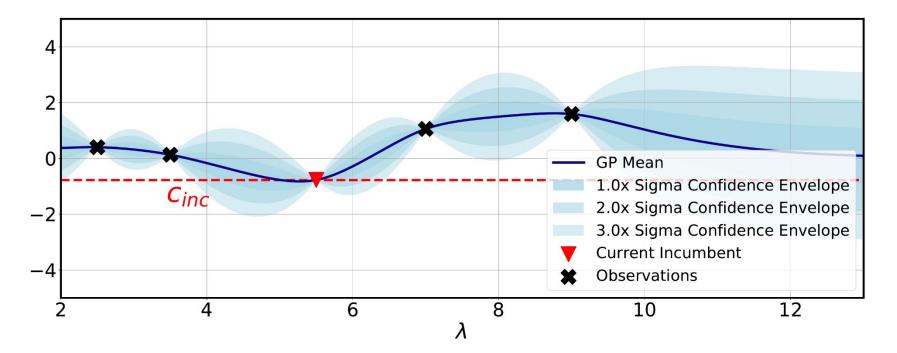
- Overhead because of model training
- Crucially relies on robust surrogate model
- Has quite a few design decisions

The acquisition function:

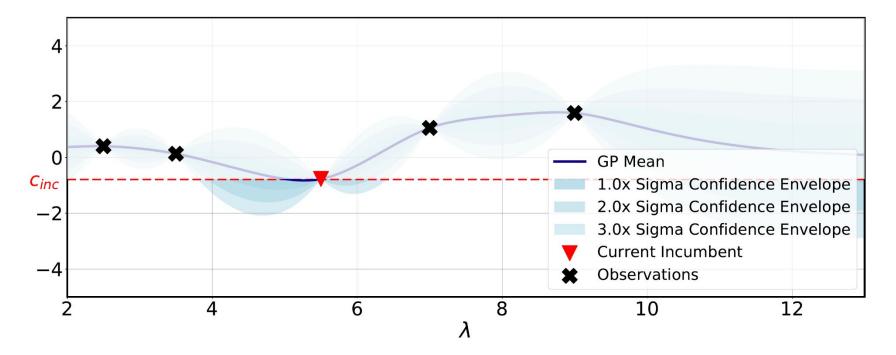
- decides which configuration to evaluate next
- judges the utility (or usefulness) of evaluating a configuration (based on the surrogate model)
- \rightarrow It needs to trade-off **exploration and exploitation**
 - Just picking the configuration with the lowest prediction would be too greedy
- It needs to consider the uncertainty of the surrogate model



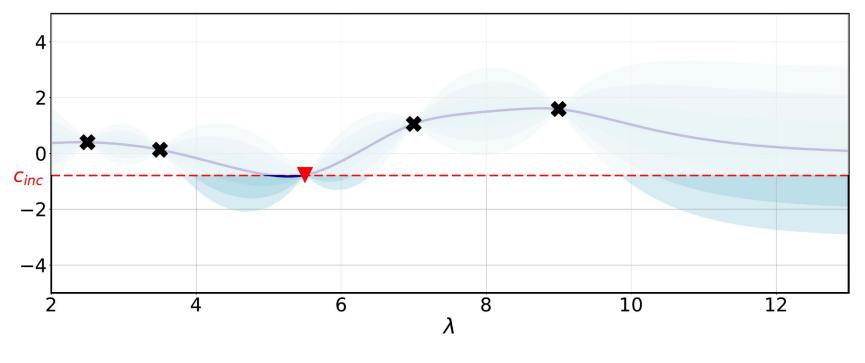
Given some observations and a fitted surrogate,



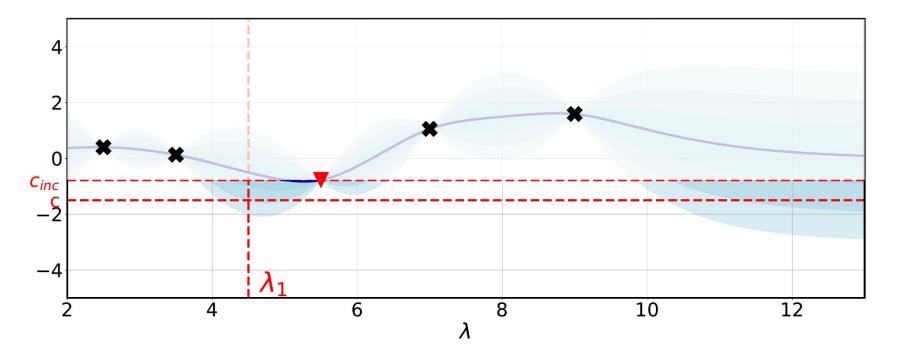
Given some observations and a fitted surrogate,



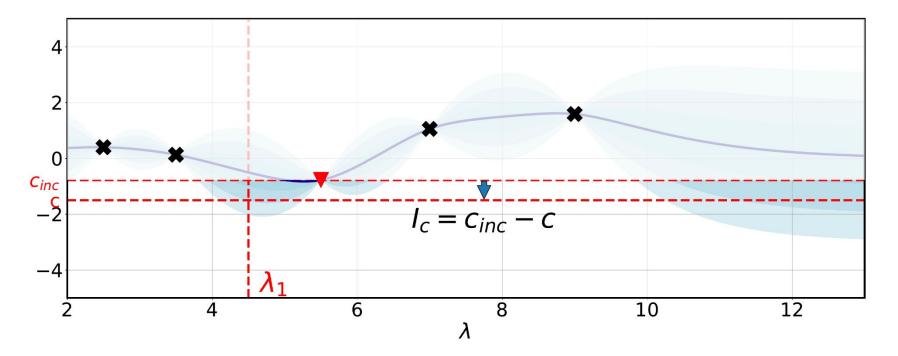
We care about *improving* over the c_{inc}.



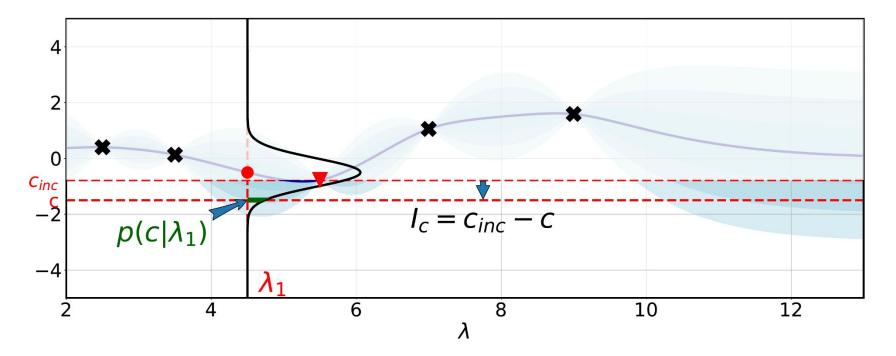
We care about *improving* over the c_{inc} .



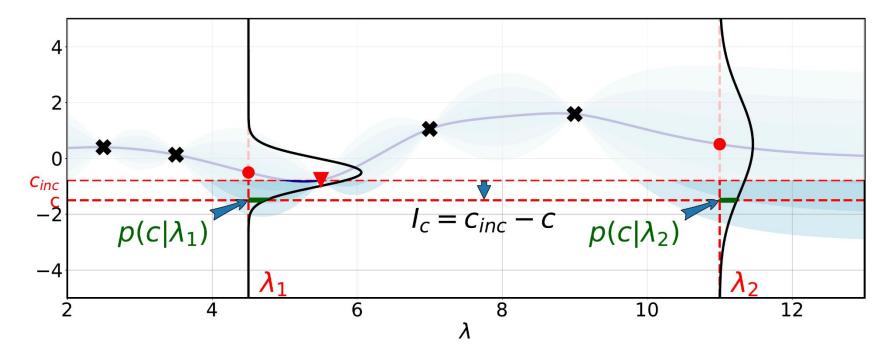
Let's look at a candidate configuration $\boldsymbol{\lambda}_1$ and its hypothetical cost c.



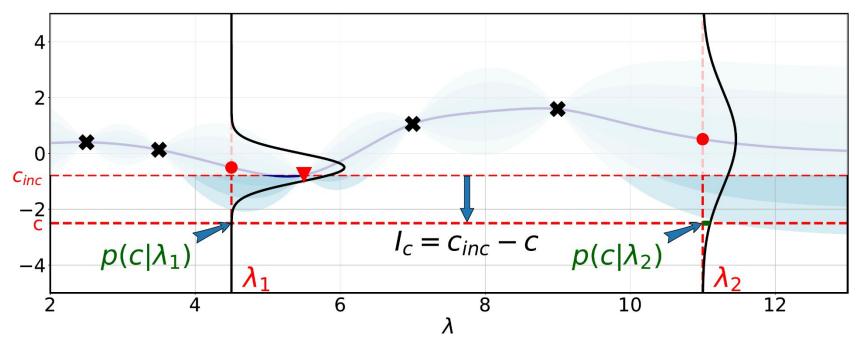
We can compute the improvement $I_c(\lambda_1)$. But how likely is it?



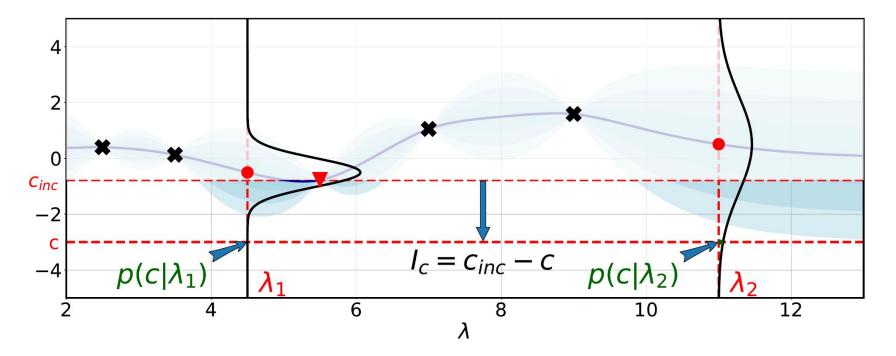
Knowing that $\hat{c}(\boldsymbol{\lambda}) = \mathcal{N}(\mu(\boldsymbol{\lambda}), \sigma^2(\boldsymbol{\lambda}))$, we can compute $p(c|\boldsymbol{\lambda})$



Comparing this for different configurations



and costs.



To compute EI, we sum all $p(c \mid \boldsymbol{\lambda}) \times I_c$ over all possible cost values.

We define the one-step positive improvement over the current incumbent as

$$I^{(t)}(\boldsymbol{\lambda}) = \max(0, c_{inc} - c(\boldsymbol{\lambda}))$$

Expected Improvement is then defined as

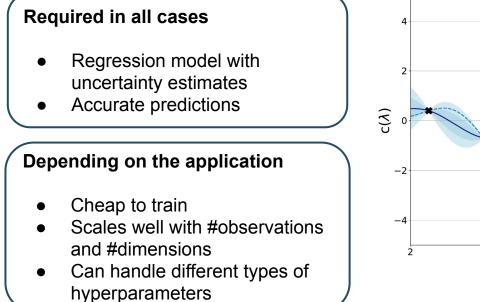
$$u_{EI}^{(t)}(\boldsymbol{\lambda}) = \mathbb{E}[I^{(t)}(\boldsymbol{\lambda})] = \int_{-\infty}^{\infty} p^{(t)}(c \mid \boldsymbol{\lambda}) \times I^{(t)}(\boldsymbol{\lambda}) \ dc.$$

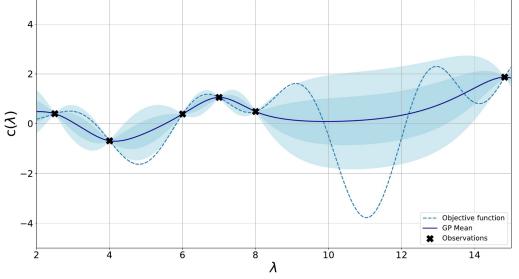
Choose
$$\boldsymbol{\lambda}^{(t)} \in rgmax_{\boldsymbol{\lambda} \in \boldsymbol{\Lambda}}(u^{(t)}_{EI}(\boldsymbol{\lambda}))$$

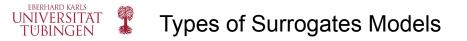
 $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$

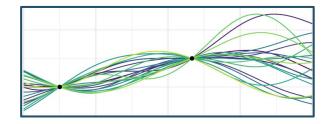
- machine learni
- **Improvement-based** policies [Expected Improvement (EI), Probability of Improvement (PI), and Knowledge Gradient]
- **Optimistic policies** [Upper/Lower Confidence Bound (UCB/LCB)]
- Information-based policies [Entropy Search (ES)]
 - aim to increase certainty about the location of the minimizer
 - not necessarily evaluate promising configurations
- Methods combining/mixing/switching these

Questions?









- Gaussian Processes
- Random Forests
- Bayesian Neural Networks

Photo by <u>Filip Zrnzević</u> on <u>Unsplash</u> Photo by <u>Alina Grubnyak</u> on <u>Unsplash</u>

 $\begin{aligned} m(\mathbf{x}) &= \mathbb{E}[f(\mathbf{x})] \\ k(\mathbf{x}, \mathbf{x}') &= \mathbb{E}\left[(f(\mathbf{x}) - \mathbb{E}[f(\mathbf{x})]) \left(f(\mathbf{x}') - \mathbb{E}[f(\mathbf{x}')] \right) \right] \\ f(\mathbf{x}) \sim \mathcal{G}\left(m(\mathbf{x}), k\left(\mathbf{x}, \mathbf{x}'\right) \right) \end{aligned}$

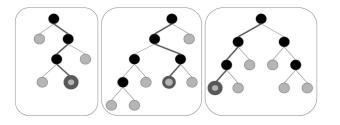
Advantages

- Smooth uncertainty estimates
- Strong sample efficiency
- Expert knowledge can be encoded in the kernel
- Accurate predictions

Disadvantages

- Cost scales cubically with #observations
- Weak performance for high dimensionality
- Not easily applicable in discrete, categorical or conditional spaces
- Sensitive wrt its own hyperparameters

→ These make GPs the most commonly used model for Bayesian optimization



Advantages

- Scales well with #dimensions and #observations
- Training can be parallelized and is fast
- Can easily handle discrete, categorical and conditional spaces
- Robust wrt. its own hyperparameters

Disadvantages

- Poor uncertainty estimates
- Poor extrapolation (constant)
- Expert knowledge can not be easily incorporated

→ These make RFs a robust option in high dimensions, a high number of evaluations and for mixed spaces

Photo by <u>Filip Zrnzević</u> on <u>Unsplash</u> Photo by <u>Alina Grubnyak</u> on <u>Unsplash</u>

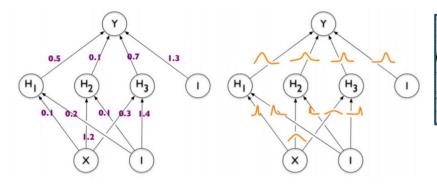


Image source: [Blundell et al. 2015]

Advantages

- Scales linear #observations
- (Can yield) smooth uncertainty estimates
- Flexibility wrt. discrete and categorical spaces

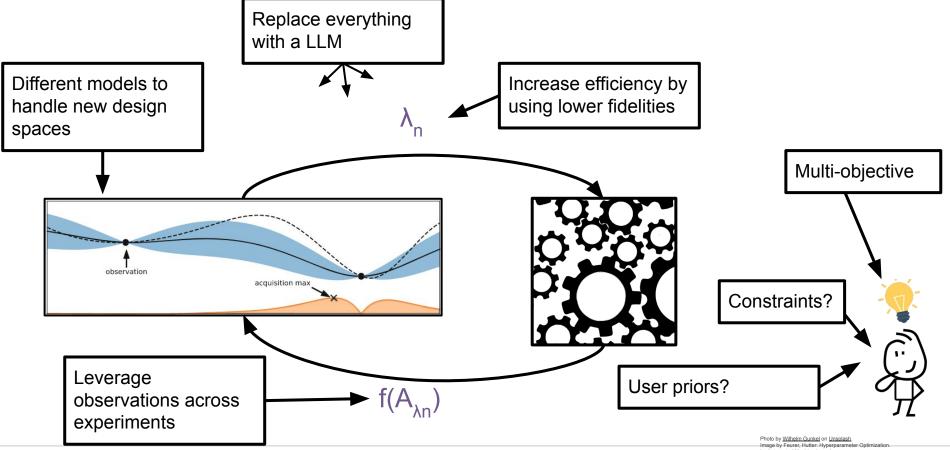
Disadvantages

- Needs many #observations
- Uncertainty estimates often worse than for GPs
- Many hyperparameters
- No robust off-the-shelf model

→ These make BNNs a promising alternative. [Li et al. 2023]

Photo by <u>Filip Zrnzević</u> on <u>Unsplash</u> Photo by <u>Alina Grubnyak</u> on <u>Unsplash</u>

UNIVERSITAT TUBINGEN Bayesian Optimization: Extensions



Questions?